Optimization of load balancing using fuzzy Q-Learning for next generation wireless networks
نویسندگان
چکیده
Load balancing is considered by the 3GPP as an important issue in Self-Organizing Networks due to its effectiveness to increase network capacity. In next generation wireless networks, load balancing can be easily implemented by tuning handover (HO) margins, achieving a decrease in call blocking. However, call dropping can be increased as a negative effect of the HO-based load balancing, because users usually are handed over to cells where the radio conditions are worse. In this work, a Fuzzy Logic Controller (FLC) optimized by the fuzzy Q-Learning algorithm is proposed for the load balancing problem, with the aim of decreasing call blocking in congested cells, while at the same time restricting call dropping in neighboring cells according to the network policy. In particular, two different approaches for the FLC optimization are evaluated in this work, highlighting that one of the proposed methods allows to accurately preserve the call quality constraint during the load balancing, while the other can adapt to network variations. Results show that the optimized FLC provides a notable reduction in call blocking while preserving call dropping under the operator constraint. 2012 Elsevier Ltd. All rights reserved.
منابع مشابه
Fuzzy-Based Handover Decision Scheme for Next-Generation Heterogeneous Wireless Networks
In the development of the wireless communication of the future, mobility management and existing heterogeneous wireless networks integration in next generation or 4G wireless networks are developing trend. Such an environment poses a significant challenge: how can we choose an appropriate Network Access Point (NAP) to achieve load balance and offer high quality communication in heterogeneous wi...
متن کاملOptimal Location and Sizing of Distributed Generations in Distribution Networks Considering Load Growth using Modified Multi-objective Teaching Learning Based Optimization Algorithm
Abstract: This paper presents a modified method based on teaching learning based optimization algorithm to solve the problem of the single- and multi-objective optimal location of distributed generation units to cope up the load growth in the distribution network .Minimizing losses, voltage deviation, energy cost and improved voltage stability are the objective functions in this problem. Load g...
متن کاملAdaptive Neuro-Fuzzy Inference System for Dynamic Load Balancing in 3GPP LTE
ANFIS is applicable in modeling of key parameters when investigating the performance and functionality of wireless networks. The need to save both capital and operational expenditure in the management of wireless networks cannot be over-emphasized. Automation of network operations is a veritable means of achieving the necessary reduction in CAPEX and OPEX. To this end, next generations networks...
متن کاملSelf-optimization of coverage and capacity based on a fuzzy neural network with cooperative reinforcement learning
Self-organization is a key concept in long-term evolution (LTE) systems to reduce capital and operational expenditures (CAPEX and OPEX). Self-optimization of coverage and capacity, which allows the system to periodically and automatically adjust the key radio frequency (RF) parameters through intelligent algorithms, is one of the most important tasks in the context of self-organizing networks (...
متن کاملRegion Directed Diffusion in Sensor Network Using Learning Automata:RDDLA
One of the main challenges in wireless sensor network is energy problem and life cycle of nodes in networks. Several methods can be used for increasing life cycle of nodes. One of these methods is load balancing in nodes while transmitting data from source to destination. Directed diffusion algorithm is one of declared methods in wireless sensor networks which is data-oriented algorithm. Direct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 40 شماره
صفحات -
تاریخ انتشار 2013